ASSOCIATION FOR THE ADVANCEMENT OF ALTERNATIVES ASSESSMENT

International Symposium on Alternatives Assessment Virtual 2020

Current Practices and Future Prospects

October 27-29, 2020

Thank You Sponsors

State of Oregon Department of Environmental Quality

National Institute of Environmental Health Sciences

International Symposium on Alternatives Assessment - Virtual 2020

Session Etiquette

- Please keep your lines muted and your videos off.
- Please make sure your **full name and organization** are noted. You can change your name by clicking on the ... next to your name/image.
- Use "**speaker view**" in Zoom it will offer the best viewing experience.
- We encourage you to drop questions in the chat during the panel presentations.
- During the discussion portion of the session, if you wish to ask a question or offer a comment, please raise your hand.
 - Also feel free to use the chat.
- This session is being recorded and will be posted with the slide deck on the A4 website: <u>www.saferalternatives.org</u>

Raising your hand in Zoom

Unmute Start Video	Participants Chat Share Screen	Record
	-	- 🗆 ×
	 Participants (2) 	
	yanoverfieldshaw (Me)	<i>¥</i> 🖂
	RG Room G-207 (Host)	<i>₩</i> 🕞
	👎 📥 👋	₽ 0
		>>
	· · ·	

- To "raise you hand"
 - first open the participants icon on the bottom of your computer screen
 - When the participants view opens, you'll find the "raise hand" icon in the icon list at the bottom.
 - Help us by lowering your hand (toggle the icon) when you finished with your question/comment
- The chat will work too

Symposium Session 5

Part I: Considering Uncertainty: Real-world strategies to make decisions

Group Discussion (or perhaps debate)?

- What do you do to address uncertainty in your assessments?
- What lessons would you pass on to this community?
- Is our practice coalescing around specific strategies?
 Should it?

Moderator & Panelists

TIM MALLOY

University of California Los Angeles

TOM LEWANDOWSKI Gradient

SHARI FRANJEVIC

Clean Production Action/GreenScreen®

MARTIN WOLF

Seventh Generation

Decision Making In the Face of Uncertainty

29 October 2020

Outline

- Introduction to Seventh Generation
- Sustainable Product Design
- Tiered Risk Management
- The Problem
- The Decision
- Q&A and Discussion

Sustainable Product Design

Products should be at the center of serving the environment and human health *without* compromising efficacy or an accessible price point. © 2020 Seventh Generation

Risk Assessment

Risk of Harm = Hazard x Exposure

Tiered Risk Management

The Problem

The Problem

Laundry Detergents: Liquids and Granules with Liquids (Unit Dose)*

	2013	2014	2015	2016	2017	2018
Sales (\$M)	625	820	980	1,222	1,380	1,476
Sales (% of all liquid detergents)	9%	12%	14%	17%	19%	19%
Incidents	10,967	13,013	14,058	13,124	12,519	12,135
Incidents (% of all liq. dets.)	65%	66%	66%	63%	65%	65%
Moderate & Major Outcomes	872	938	902	719	699	667
Mod & Maj Outcomes (% of all)	84%	84%	85%	78%	85%	86%
Deaths	2	4	1	0	1	1
Deaths (% of all deaths)*	100%	100%	33%	0%	33%	50%

*American Association of Poison Control Centers, Annual Reports, 2013-2018

The Uncertainty

"The mechanisms of toxicity are *not completely understood* but it is probable that the primary cause is the high concentration of non-ionic surfactants present in some capsules, though anionic surfactants, ethanol and propylene glycol may also contribute."

Rachael Day, Sally M. Bradberry, Simon H. L. Thomas & J. Allister Vale (2019): Liquid laundry detergent capsules (PODS): a review of their composition and mechanisms of toxicity, and of the circumstances, routes, features, and management of exposure, Clinical Toxicology, DOI: 10.1080/15563650.2019.1618466

Managing Exposure

- Packaging
 - Opaque
 - Child resistant
- Packet envelope (soluble film)
 - Aversive (bittering) agent
 - Enhanced burst strength
 - Reduced rate of dissolution
- Enhanced hazard warnings

Questions, Discussion Thank you!

martin.wolf@seventhgeneration.com

USER& LAST 7 DAYS US NG MEDIAN

the main and bord put

And the second se

Multivariate Assessment of Assumption Uncertainty

Tom Lewandowski, Ph.D., DABT, ERT, ATS A4 Virtual Symposium •October 29, 2020

The Issue

- Until recently automotive air conditioning systems used R-134a (tetrafluoroethane) as the refrigerant
- R-134a is a potent greenhouse gas
 - The chemical stability of R-134a is part of the problem; it doesn't degrade and can reach the upper atmosphere
- When air conditioning systems leak slowly over time, R-134a is released into the environment
- Under US law, replacements for R-134a (and similar gases) have to have an equivalent overall impact (with trade off among possible impacts)
- No free lunch; lower global warming potential may mean less ideal for other hazards

Overall Evaluation of Refrigerant Alternatives

Property	R-134a	CO2	HFO-1234yf	Comparison
Toxicity				
Human Health Toxicity	Low	Slightly higher	Slightly lower	More favorable to HFO-1234yf
Ecological Toxicity	Low	Low	Low	Equivalent
Flammability	Not flammable	Not flammable	Weakly flammable	More favorable to CO ₂
ODP	0	0	0	Equivalent
100 year GWP ($CO_2=1$)	1,430	1	4	Much more favorable to CO ₂ and HFO-1234yf
Performance	NA	Limitations for mobile AC	Slightly better than 134a	More favorable to HFO-1234yf
Technical feasibility	NA	Notable implementation challenges	Drop in replacement	Much favorable to HFO-1234yf

ODP – Ozone Depletion Potential GWP – Global Warming Potential

Deciding on an Alternative

- Over a multi-year process, global industry stakeholders came together to evaluate the merits of each alternative
- Ultimate goal was to estimate the likelihood/probability of an adverse event in the event of a vehicle crash or leak
 - Multiple factors were involved (e.g., severity of crash, geometry of crash, aging of parts over time)
- Much of the analysis required expert judgement regarding various assumptions in the evaluation
 - Different opinions were evident, based on differences in experience, philosophy, goals
- Sensitivity analysis was a way to ensure that everyone's position was acknowledged

Sensitivity Analysis

- The easiest approach is simply to redo the analysis, changing one value at a time to see the difference
 - May not be realistic, since assumptions may go together
- Multivariate probabilistic sensitivity analysis allows for understanding the range of uncertainties
- Ask experts to determine ranges/probabilities for key variables of interest
 - Those with the least data, the largest expected variability, or those based on expert judgment
- Perform the analysis using a forecasting/simulation program to generate a probability distribution of the results

Examples of Input Distributions

Outcome: 95% Confidence Intervals on Estimated Outcome

- Shown is the probability of an ignition event due to a flammable refrigerant
 - Gave regulators more confidence in overall conclusions
 - Gave stakeholders greater satisfaction their views were addressed
 - Replacement refrigerants were accepted and are currently in use
- Could just as easily be a score for a set of different alternatives

Possible Use in an AA

```
Alternative Score = w_1 x hazard score + w_2 x performance score + w_3 x exposure score + w_4 x cost score .....
```

where w_{1-4} are weighting factors for each module

- Probabilities could be assigned to different scores and/or different weighting factors
 - Result would be a confidence distribution for each alternative
 - Issues
 - Assigning distributions itself is uncertain
 - Fancy seeming results can (1) be confusing, (2) over-instill confidence

SHARI FRANJEVIC

GREENSCREEN PROGRAM MANAGER, CLEAN PRODUCTION ACTION

ASSOCIATION FOR THE ADVANCEMENT OF ALTERNATIVES ASSESSMENT VIRTUAL SYMPOSIUM 2020 CONSIDERING UNCERTAINTY: REAL-WORLD STRATEGIES TO MAKE DECISIONS OCTOBER 28, 2020

Clean Production Action – solutions for a safer & healthier tomorrow

Hazard Endpoints: 18 mandatory

Human Health Group I	Human Health Group II and II*	Environmental Toxicity & Fate	Physical Hazards
Carcinogenicity	Acute Toxicity	Acute Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Chronic Aquatic Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity	Other Ecotoxicity Studies when available	
Dovelopmental Toxicity	Skin Sensitization		
Developmental loxicity	Respiratory Sensitization	Persistence	
Endocrine Activity	Skin Irritation	Bioaccumulation	
LINUCI II E ACTIVILY	Eye Irritation	Dioaccumulation	

Hazard Summary Table

	Group I Human					Group II and II* Human						Eco	tox	Fa	te	Phy	sical		
Carcinogenicity	Mutagenicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute Toxicity		systemic loxicity		Neurotoxicity	Skin Sensitization*	Respiratory Sensitization*	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Reactivity	Flammability
						single	repeated*	single	repeated*	*	*								
L	L	L	М	М	L	L	L	vH	Н	L	DG	L	L	н	Η	vL	L	М	L

vH = very High

H = High M = Moderate

L = Low VL = v

vL = very Low DG = Data Gap

Benchmark Score

GREENSCREEN BENCHMARK-4

Low P* + Low B + Low T (Ecotoxicity, Group I, II and II* Human) + Low Physical Hazards (Flammability and Reactivity) + Low (additional ecotoxicity endpoints when available)

Prefer—Safer Chemical

GREENSCREEN BENCHMARK-3

- a. Moderate P or Moderate B
- b. Moderate Ecotoxicity
- c. Moderate T (Group II or II* Human)
- d. Moderate Flammability or Moderate Reactivity

Use but Still Opportunity for Improvement

GREENSCREEN BENCHMARK-2

- a. Moderate P + Moderate B + Moderate T (Ecotoxicity or Group I, II, or II* Human)
- b. High P + High B
- c. High P + Moderate T (Ecotoxicity or Group I, II, or II* Human)
- d. High B + Moderate T (Ecotoxicity or Group I, II, or II* Human)
- e. Moderate T (Group I Human)
- f. Very High T (Ecotoxicity or Group II Human) or High T (Group II* Human)
- g. High Flammability or High Reactivity

Use but Search for Safer Substitutes

GREENSCREEN BENCHMARK-1

- a. PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

G R E E N S C R E E N B E N C H M A R K – U

Unspecified Due to Insufficient Data

Copyright © (2014–2016) by Clean Production Action, All rights reserved.

Strategies for Uncertainty

To communicate uncertainty:

- Transparency in hazard classifications
- Transparency in Benchmark scores
- To choose a chemical or determine if it is safer
- Minimum data requirements
- Benchmark score
- Confidence in hazard classifications

Transparency – Data Gaps

GreenScreen Hazard Summary Table clearly displays unknown hazards

Transparency – Confidence in Hazard Classifications

GreenScreen Hazard Summary Table clearly indicates confidence in hazard levels

Minimum Data Requirements – Defined by method

			Benchmark 4 – N	Max 0 DGs
		Benchmark 3 Data	Requirements	
		3a – Group I Human	Max 1 DG	
		3b – Group II Human	Max 2 DGs	
Benchmark 2 Data	Requirements	3c - Ecotoxicity	Max 0 DGs	
2a – Group I Human	Max 2 DGs	3d - Fate	Max 0 DGs	
2b – Group II Human	Max 3 DGs	3e - Physical	Max 0 DGs	
2c – Ecotoxicity	Max 1 DG			
2d - Fate	Max 0 DGs			
2e - Physical	Max 0 DGs			

Changes in Benchmark Score

Minimum Data Requirements – Defined by user

E.g., Endocrine Activity is an unacceptable data gap for this situation.

		Endocrine Activity
Chemical of Concern	Benchmark-1	Н
Alternative 1	Benchmark-2	DG
Alternative 2	Benchmark-2	DG
Alternative 3	Benchmark-2	М
Alternative 4	Benchmark-2	М

Strategies for Uncertainty

Interpreting the data:

- Guidance
- External panel of experts

Thank you!

Contact Clean Production Action:

Shari Franjevic shari@cleanproduction.org

https://www.greenscreenchemicals.org/

Group Discussion (or perhaps debate)?

- What do you do to address uncertainty in your assessments?
- What are the lessons that would you pass on to this community?
- Is our practice coalescing around specific strategies?
 Should it?

Up Next After 30-Minute Break

Symposium Session 6

Part II: Considering Trade-offs: Real-world strategies to make decisions

Moderator: Molly Jacobs, University of Massachusetts Lowell

Panelists:

- Matteo Kausch, Cradle to Cradle Products Innovation Institute
- Tom Lewandowski, Gradient
- Heather McKenney, The Honest Co.
- Mallory McMahon, The Honest Co.
- Martin Wolf, Seventh Generation

Use Zoom Link for Session 6 [requires registration]

Thank you for joining us!